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Abstract&Duplex heat exchanger tubes consist oftwo concentric cylinders assembled in a state ofprestress by 
shrink fitting. During operation, thermal expansion changes the interface pressure and this can cause a 
substantial increase in the thermal resistance of the tube. Under certain circumstances, more than one steady- 
state solution can be obtained. In this paper, the effect of this mechanism on the axial temperature variation in 
parallel or counterflow heat exchangers is analyzed. A method is developed for integrating the controlling 
equations for an arbitrary, non-linear, pressure-dependent contact resistance without iteration and the effect 

of prestress and other parameters on the occurrence of multiple solutions is discussed. 

INTRODUCTION 

IN A RECENT paper, Srinivasan and France [l] have 
shown that multiple solutions are obtained under 
certain conditions when a Duplex tube is used in a 
counterflow heat exchanger. In the heat exchanger, 
there is a temperature difference between the outer and 
inner wall of the composite tube and differential 
thermal expansion tends to reduce the interface contact 
pressure and hence to increase the contact resistance. 
Srinivasan and France incorporated an analytical 
model of this mechanism into a computer simulation of 
a counterflow heat exchanger tube, using experimental 
data for therelation between thermal contact resistance 
and contact pressure (or gap). They found that, if the 
initial (i.e. assembled) prestress is sufficiently low, the 
system is capable of adopting any one of three steady 
states. 

In this paper, a previous analysis of the Duplex tube 
[2] is extended to allow for axial variation of 
temperature in order to examine in greater generality 
than in ref. [l] the conditions under which multiple 
solutions can occur. In particular we shall show that 
when the Duplex tube is used in a counterflow heat 
exchanger, it is possible to obtain multiple solutions 
even though no part of the tube is in a condition which 
under two-dimensional conditions-i.e. without axial 
variation of temperature difference-could exist in 
more than one state. 

STATEMENT OF THE PROBLEM 

The Duplex tube shown in Fig. 1 is fabricated by 
shrinking one cylinder onto another, leaving the 
assembly in a state of prestress. The two cylinders are 
taken to be made of the same material, with coefficient 
of thermal expansion CI, thermal conductivity K, 
Young’s modulus E and Poisson’s ratio v, though the 

more general case would not involve any qualitatively 
different behavior. Heat transfer occurs between the 
inner surface of the tube (radius r 1) and a contained fluid 
at temperature Tr through a coefficient h, and between 
the outer surface (radius r2) and surrounding fluid at 
temperature T2 through a coefficient h,. At the interface 
(radius ro) there is a thermal contact resistance R, which 
varies with pressure or gap in a monotonic but as yet 
unprescribed way. 

The temperatures T,, T2 are allowed to vary with the 
axial distance .z along the tube, but the heat transfer 
coefficients hi, h, are assumed to be temperature 
independent and hence constant. We also assume that 
the distribution of initial prestress-i.e. prestress in the 
isothermal condition-is uniform along the tube. 

Following Srinivasan and France, we assume that 
the local state of stress in the tube can be approximated 
as one of plane stress (i.e. we assume that shell bending 

T2 

FIG. 1. Geometry of the problem. The heat transfer coefficient 
is h, at radius rl and h, at radius r2. Both tubes are of the same 

material. 
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NOMENCLATURE 

C, specific heat of fluid r1, r2 inside radius, outside radius 
ci, c2 see equations (3), (6) R thermal contact resistance 
d 

do 

f 
9 
h 
H 
K 

L 
ti 

Q 

initial radial interference 
minimum value of d for there to be a range 

of multiple solutions 
see equation (4) 
gap at the interface 
heat transfer coefficient 
Biot number 
thermal conductivity 
length of heat exchanger tube 
mass flow rate 

heat flow per unit axial length 

T temperature 

L TE2 entry temperatures. 

Greek symbols 
c( coefficient of thermal expansion 
li ri/ro, i = 1, 2 
V Poisson’s ratio. 

Subscripts and superscripts 
1 inner cylinder 
2 outer cylinder 
* dimensionless variable. r, 0, z cylindrical polar coordinates 

r0 interface radius 

effects and axial heat conduction in the shell can be 
neglected) and hence the problem is locally two- 
dimensional in the cross-sectional plane and depends 
on the axial co-ordinate z only through the fluid 
temperatures T,, T2. In the steady-state, these 
temperatures are related to the inward radial heat flow 
rate Q per unit axial length, through the energy balance 

equations 

dT 
2 = Q/rir& (1) 

where mi, Cpi (i = 1,2) are respectively the mass flow 
rates and specific heats of the fluids, both assumed 
independent of z. We define the mass flow rates to be 
positive in the z direction, so that for a counter-flow 
heat exchanger ni, and &, will be of opposite sign. 
However, much of the following analysis is also 
applicable to the parallel flow case. 

HEAT FLOW THROUGH THE TUBE WALL 

The controlling differential equation of the problem 
is obtained by combining equations (1) with a further 
equation defining the heat flow through the wall of the 
Duplex tube as a function of the temperatures T,, T,. 

This problem is analyzed in ref. [2], where it is shown 
that the heat flow rate in the steady state is 

(2) 

(see [3]), where 

1 1 

c1=m+12H2 
~ + log (UU (3) 

and 

R* = KRJr,, Hi = biro/K, Ai = ri/ro (i = 1, 2). 

The contact resistance R is defined in terms of the 
dimensionless function 

(Cl -c2) 

f= ‘-(R*+c,) 

which satisfies the non-linear equation 

g* = 7-f-wd+ (3 
where 

g* = g/r,, d* = d/r,, T* = a( 1 + v) ( T2 - T,), 

d is the radial interference which determines the initial 
prestress 

a: 1: 
c2 = ~ log 12 - (A: _ 1) 1% 11 

cn:- 1) 
(6) 

and g is the steady-state gap at the interface. For thin- 
walled tubes, c2 is approximately (A, - 1,)/2. 

Equation (5) also describes the condition where the 
interface remains in contact provided that negative 
values of g* are interpreted in terms of the interface 
pressure, p, through the equation 

2(1-vz)(a:-a:) 

--9* = (n;_l)(l-g) dE. (7) 

SOLUTION FOR THE 

CONTACT PRESSURE 

The solution of equation (5) is most conveniently 
discussed in graphical terms as in ref. [2]. For 
illustration, we assume that the tube is steel (K = 35 W 
m-‘“C-‘,E = 210GPa,v = 0.3,a = 12x 10-60C-1) 
and that r. = 16 mm, rl = 13.6 mm, r2 = 18.4 mm, 
giving I, = 0.85 and 1, = 1.15. These are close to the 
values of Srinivasan and France, from whom we also 
take the contact resistance curve shown in Fig. 2. 
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FIG. 2. Contact resistance R as a function of pressure p and gap g (from ref. Cl]). 

The function f depends on g* only through the 
resistance R* and is plotted in Fig. 3, for various values 
ofc,.Itisasymptotictof = 1 asg* + co andto+, as 
g* + - co. If there is good heat transfer between the 
tube walls and the surrounding fluids, the first two 
terms in equation (3) will be small giving a lower limit to 
c1 of log (&/L,). For thin-walled tubes, this reduces to 
c1 x (1,-L,) x 2c,, so that the limiting value off at 
large negative g* is 0.5. When there is significant 
resistance to convective heat transfer, c1 is greater than 
(A, - 1,) and the lower limit off is reduced as can be 
seen in Fig. 3. 

Equation (5) can be solved graphically by finding the 
intersection of f(g*) with a straight line of slope l/T* 
passing through the point (-d*, 0). There is a critical 
value d& which can be found by drawing the tangent to 
the curve at the point of maximum slope (A) and 
extending it to intersect the axis f = 0. For d* < d& 
there is always a unique steady-state solution but ford* 
> d,* there is a range of values of T* for which there are 
three solutions, indicated in Fig. 3 by the intersections 
B, C and D. 

For the conditions illustrated in Fig. 3, the point of 
maximum slope occurs at g* = -3.25 x 10m5 for all 

values of cl. This is attributable to the fact that the 
resistance curve is approximated by a straight line in the 
range (0 < p < 0.56 MPa) because experimental values 
of contact resistance were not available at such low 
pressures. The minimum value of d* for multiple 
solutions to occur is 1.02 x 1O-4 for c1 = 0.4, 
corresponding to an initial contact pressure of 1.9 MPa. 

For a given value of initial prestress, multiple 
solutions are obtained only in a restricted range of 
temperature differences, corresponding to the slopes of 
those straight lines which make three intersections with 
the f curve. This range is shown as a function of d* in 
Fig. 4. For a large range of values of d* above 3 x 10w4, 
the minimum temperature difference to give multiple 
solutions corresponds to the line which gives an 
intersection at g* = 0 and which is defined by the 
equation 

T* = d*,‘f(O). (8) 

Thus, although a certain minimum prestress is 
necessary for multiple solutions to be possible, the 
temperature difference needed to produce them 
increases with prestress, and hence an increase of 
prestress may be sufficient to avoid such behavior. 

I- 
-1.2 -1.0 -06 -0.6 -0.4 -02 0 0.2 0.4 0.6 0.6 

x lo-4 g ’ 
RG. 3. The function f is shown for various values of c1 and c1 = 0.15. Solutions of equation (5) correspond to 

intersections between these curves and the straight line f = (g* +d*)/T*. 
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FIG. 4. Effect of prestress d* and temperature difference T* on the occurrence of multiple solutions (cl = 0.4, 
c* = 0.15). 

RELATION BETWEEN TEMPERATURE corresponding to three distinct values of Q*, but a more 
DIFFERENCE AND HEAT FLUX striking feature of the curves is the extreme sensitivity of 

From a heat transfer standpoint, the important Q* to T* in the vicinity of the transition from contact to 

relationship is that between the temperature difference separation and this is not restricted to the multiple 

T* and the heat flow rate, Q. Defining a dimensionless solution case (d* > d,*). We also note that for all the 

heat flow rate, Q* = a( 1 + v)Q/2aK, we find curves illustrated, T* is a multivalued function of Q* in 
some range. All the curves tend to approximately the 

Q* = T*/(R* + cl) (9) same straight line in the separation regime, since the 

from equation (2). This relation is easily computed by interface resistance is then almost constant (see Fig. 3). 

treating g* as a parameter-i.e. for each value ofg*, R is 
found from the resistance curve, T* is then found from 
equations (4) and (6) and finally Q* from equation (9). 
All these eauations are linear in the functions for which AXIAL VARIATION OF TEMPERATURE 

they are solved. The variation of temperature along the heat 
The resulting curves for cr = 0.4 and various values exchanger tube is defined by a differential equation 

of d* are shown in Fig. 5. The multiple solutions appear which is obtained by eliminating Q from equations (1) 
in this figure in those curves which exhibit a range of T* and the relation shown graphically in Fig. 5. From (1) 

7- 

8 

5- 

4- 
* 

‘o_ 3- 
x 

2- 

I- 

FIG. 5. Relation between heat flux Q* and temperature difference T* for various values of the prestress d*. 
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and the definitions of Q*, T*, we have 

dT*/dz* = -Q* 

where 

(10) 

z* = 2aKz 
( 

1 1 
-+-. 
&C&l1 fi2cp2 > 

The direction ofthe positive z axis is chosen such that 

( 1 1 
p+- 
n&c,1 h2C,2 > 

>o (11) 

in which case, T* is a monotonically decreasing 
function of z. 

The dimensionless heat flux Q* is a known function 
of T* and hence equation (10) can be numerically 
integrated to find T* as a function of z*, except for an 
arbitrary constant in z* which is determined by the 
entry conditions to the tube. As with equation (9), it is 
convenient to perform this integration parametrically 
in terms of g*, since all the required functions can then 
be obtained explicitly, without iteration. 

For this purpose, we rewrite equation (10) in the form 

dz*/dT* = -l/Q* (12) 

and define a series ofN points at which g* has the values 
gi(i = l,..., N). The values of T*, Q*, z* at these points 
are denoted by T, Qi, zir respectively. The T, Qi are 
calculated as above [equation (9)] and the unknown 
values of zi,,can now be determined (except for an 
arbitrary constant) from the finite-difference equations 

z~+~-z~=-(T+~-~J/Q~, i=l,...,N-1. (13) 

A modified version of this procedure is required for 
those portions of the tube where multiple solutions are 
predicted. The two-dimensional analysis shows that, in 
these cases, at least two solutions are stable, and hence 
we can only deduce the state realized in practice by 
following the thermal and mechanical history of the 
system. In the present system, the situation is made even 
more complex by the fact that the transition from one 
branch of the curve to the other could take place at any 
point in a section of tube in the appropriate 
temperature range. However, we can place upper and 
lower bounds on the possible solutions by pursuing two 
alternative limiting assumptions : (i) that solution B in 
Fig. 3 is always preferred to solution D ; or (ii) that D is 
always preferred to B. In Fig. 5, this is equivalent to 
replacing the actual curve by a discontinuous, but 
single-valued function consisting of the portion(i) up to 
B and beyond D, or (ii) up to A and beyond C. The 
portion of the curve in Fig. 5 between B and C 
corresponds to solutions like intersection C in Fig. 3 
and would be expected to be unstable on the basis of the 
two-dimentional analysis. 

These assumptions are implemented in the 
numerical integration by rejecting those values of gi 
which require a reversal of sign in (T+l - TJ. For 
example, with assumption (i), when the point B is 
detected, g is incremented without incrementing z, until 

0 I 
z* 

5 

FIG. 6. Axial variation of temperature difference T* along the 
tube (cl = 0.4, c2 = 0.15). 

a value is reached where a higher T* is predicted, 
corresponding to a point to the right of D. 

Figure 6 shows the variation of temperature 
difference between the two fluids along the axis of the 
tube for various values of the initial prestress d*. We 
note that, apart from the variation between the limits 
predicted by assumptions (i) and (ii) above, the 
dimensionless presentation used gives a single curve for 
each value of prestress, which applies for all mass flow 
rates (including parallel or counter flow) and all entry 
conditions. The entry conditions merely determine 
which portion of the curve is appropriate to the actual 
finite tube. 

ENTRY CONDITIONS 

For a parallel flow heat exchanger, the mass flow rates 
have the same sign and the inequality (11) requires that 
they be positive. The entry conditions and hence T* are 
therefore known at the left end of the tube and we can 
find the corresponding value of z* from Fig. 6. We 
denote this value by z,*. The heat flux Q is then known at 
all points of the tube and we can find the temperatures 
T,, T2 of the two fluids from equations (1) in the form 

T,(z) = F(z,)- fi,C,,T*(z) 

a(1 +v)(%C,, +ti,c,,j 
(14) 

T,(z) = T(z,)+ elC,,T*(z) 

a(1 +‘)(&C*, +~‘zc,,) 
(15) 

where 

T(z) = ~IC,IT,(Z)+~&TZ(Z) 
(%C,, +e2cp21 

(16) 
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The counterflow heat exchanger is more interesting 
in that T1 is known at one end of the tube and T, at the 
other. The mass flow rates now have opposite sign and 
(ll)requiresti,C,,+ti,C,, < 0. 

We first consider the case ticI, > 0 for which the two 
entry temperatures are 

T,(z,) = TE1; Mo+U = TEz (17) 

where L is the length of the tube. 
Substituting into equations (14) and (15) and 

eliminating T(z,) we find 

&,C,,T*(z~+L*)+li2,C,,T*(z,*) 

=(~,C,,+~,C,,)cc(l+v)(T,,-T,,) (18) 

which must be solved for z$. 
For the opposite case, tiz > 0, we define 

q(zo + -U = TEI ; T&o) = TEz (19) 

and find 

= (4Cpl +W,,)N +v)(T,,- 7-h). (2’3) 

In both cases, the inequality (11) and the monotonic 
nature of T* guarantee the existence of at least one 
solution for zz if TEz > T,,--i.e. for radially inward 
heat flow. (The case of radially outward flow can be 
treated in the same way, using an extension of Figs. 5,6 
into the range g* < -d*, but it has no specially 
interesting features.) 

MULTIPLE SOLUTIONS 

It is clear from Fig. 6 that multiple solutions can 
occur in either parallel or counterflow heat exchanger 
tubes if the prestress is sufficiently high and the entry 
conditions are such as to cause the temperature 
difference at some point to be in the appropriate range. 
However, we shall show in this section that the 
counterflow heat exchanger can exhibit multiple 
solutions, even if there is a unique relationship between 
Q* and T*. 

To demonstrate this, we consider the question of 

solving equation (18) for 23, the other quantities being 
assumed known. It can be shown from the properties of 
the function T*(z*) that the LHS of this equation- 
denoted subsequently by F(zg)-is a continuous 
function which tends to zero at large positive zz and to 
- co at large negative z*. The RHS of equation (18) is 
also negative and hence the equation has at least one 
solution, but it will have three solutions for certain 
values of the entry temperatures if F(z$) has a local 
maximum and minimum. This in turn will generally be 
the case if the function T* shows a maximum and a 
minimum, and this is so even if d* < dg. 

For particular values of the parameters, it is possible 
to determine this question simply by computing F (zt) 
in the appropriate range, but in general, we can deduce 
from the nature of the curves in Fig. 6 that IF( will 
tend to display a maximum at zz = z: and a minimum 
at zz = (z: -L*), where .z: is the point at which T* is 
discontinuous in slope. It follows that a sufficient (but 
not necessary) condition for the existence of a range of 
(TEz - TE1) to give multiple solutions is 

F(z3 > -(~,C,l+rit,C,,)a(l+v)(T,,-_T,,) 

> - F(zT -L*). (21) 

In this case, the three solutions will generally occur 
respectively in the ranges: (i) zt > z: (contact 
throughout the tube); (ii) z: > zi: > z: --L* (transition 
from contact to separation in the middle of the tube); 
and (iii) z: -L* > zg (separation throughout the tube). 
However, if the maximum or minimum of F(z,*) does 
not occur at the points of slope discontinuously, other 
combinations of solutions are possible. 
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INFLUENCE DE LA RESISTANCE THERMIQUE DE CONTACT INTERNE SUR LA 
PERFORMANCE THERMIQUE D’UN TUBE DOUBLE FRETTE 

R&urn&-Le tube double frettt pour tchangeur de chaleur est constitui: de deux cylindres concentriques 
assemblts dans un btat de prkontrainte. Pendant l’optration, la dilatation thermique change la pression g 
l’interface et ceci cause un accroissement sensible de la rbistance thermique du tube. Dans certaines 
circonstances, on peut obtenir plus d’une solution de rkgime permanent. On analyse l’effet de ce mkanisme sur 
la variation de tempkrature axiale dans les bchangeurs de chaleur en itcoulements paralldles, & co-courant ou 
contre-courant. On dbveloppe une mtthode pour inttgrer sans it&ration les bquations dans le cas d’une 
resistance thermique de contact arbitraire, non lintaire, dkpendant de la pression, et on discute l’effet de la 

prkontrainte et des autres parambtres sur la possibilitk de solutions multiples. 
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EINFLUSS DES THERMISCHEN KONTAKTWIDERSTANDS AUF DAS 
WARMEUBERTRAGUNGSVERHALTEN VORGESPANNTER DOPPELROHRE 

Zusammenf~~Doppelrohr-Warmetauscher bestehen aus zwei, unter Vorspannung ineinander- 
gefiigten, konzentrischen Zylindem. Wahrend des Betriebes verandert sich die Fllchenpressung in der 
Kontaktflache der Rohre durch therm&he Ausdehnung, was eine Zunahme des therm&hen Widerstands 
zur Folge haben kann. Unter bestimmten Voraussetzungen erhalt man mehr als eine stationare Losung. 
In diesem Bericht werden die Auswirkungen dieses Vorgangs auf die axiale Temperaturverteilung in Gleich- 
und Gegenstromwarmeiibertragem untersucht. Es wurde ein Verfahren entwickelt, urn die den Vorgang 
beschreibenden Gleichungen in geschlossener Form fur einen beliebigen nichtlinearen druckabhangigen 
Kontaktwiderstand zu l&en. Der Einflug der Vorspannung und anderer Parameter auf das Zu- 

standekommen von Mehrfach-Liisungen wird diskutiert. 

BJIIDIHME TEPMH’IECKOI-0 COHPOTBBJIEHWR HA MEX&pA3HOH IPAHRHE HA 
XAPAKTEPBCTWKH TEIIJIOOEMEHA HPEABAPHTEJIbHO HAIIPJ-DKEHHOH TPYBbI C 

ABOHHOH CTEHKOH 

AmoTaunn--Tpy6bI TenJIOO6MeHHBKa C jlBOiiHOii CTeHKOfi COCTORT 113 JlByX KOHUeHTpAYeCKHX WJINH- 

npOB,CO6paHHbIX B COCTOSWWiB npenBapSlTeJIbHOr0 HanpaxeHm MeTO.DOM HaTWa. B IIpOIleCCe pa6OTbr 

TennOBOe pacmipeH5fe A3MeHlleT naBneHue Ha Memt$asHoii rpaawe, 'iT0 CytUeCTBeHHO yBeJIwIMBaeT 

Te,UIOBOe COIIpOTHBJeHkle. npll OIIpeneneHHbIX yCnOBW,X MOmHO nOJIyYHTb HeCKOJIbKO CTaUAOHapHbIX 

~IUeH&i..‘iHaJISi3lipyeTC~ BJIAIlHMe yKa3aHHOi-0 MeXaHA3Ma Ha aKCAaJIbHOC 83MeHeHEieTCMnepaTypbI B 

np,IMOTOWbIX BJIU IIpOTBBOTOYHbIX TeIIJIOO6MeHHI.iKaX.Pa3pa60TaH MeTOLl 6e3bITepaWiOHHOrO MHTCT- 

p,,pOBaHAR OCHOBHbIX ypaBHeHAii B CJIy'lae npOH3BOnbHOr0, HeJI‘lHeiiHOrO, 3aB1(CllIIJeTO OT L,aBJICHMIl 

COnpOTrtB,IeHHfl KOHTaKTaII o6cymnaerca BJIHXHACZ npeflBap5iTeJIbHOrO HaIIpn)KeHHXkiDpyrHX IIapaMCT- 

poe Ha wicno pemesnii. 


