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Abstract—Duplex heat exchanger tubes consist of two concentric cylinders assembled in a state of prestress by

shrink fitting. During operation, thermal expansion changes the interface pressure and this can cause a

substantial increase in the thermal resistance of the tube. Under certain circumstances, more than one steady-

state solution can be obtained. In this paper, the effect of this mechanism on the axial temperature variation in

parallel or counterflow heat exchangers is analyzed. A method is developed for integrating the controlling

equations for an arbitrary, non-linear, pressure-dependent contact resistance without iteration and the effect
of prestress and other parameters on the occurrence of multiple solutions is discussed.

INTRODUCTION

IN A RECENT paper, Srinivasan and France [1] have
shown that multiple solutions are obtained under
certain conditions when a Duplex tube is used in a
counterflow heat exchanger. In the heat exchanger,
there is a temperature difference between the outer and
inner wall of the composite tube and differential
thermal expansion tends to reduce the interface contact
pressure and hence to increase the contact resistance.
Srinivasan and France incorporated an analytical
model of this mechanism into a computer simulation of
a counterflow heat exchanger tube, using experimental
data for the relation between thermal contact resistance
and contact pressure (or gap). They found that, if the
initial (i.e. assembled) prestress is sufficiently low, the
system is capable of adopting any one of three steady
states.

In this paper, a previous analysis of the Duplex tube
[2] is extended to allow for axial variation of
temperature in order to examine in greater generality
than in ref. [1] the conditions under which multiple
solutions can occur. In particular we shall show that
when the Duplex tube is used in a counterflow heat
exchanger, it is possible to obtain multiple solutions
even though no part of the tube is in a condition which
under two-dimensional conditions—i.e. without axial
variation of temperature difference—could exist in
more than one state.

STATEMENT OF THE PROBLEM

The Duplex tube shown in Fig. 1 is fabricated by
shrinking one cylinder onto another, leaving the
assembly in a state of prestress. The two cylinders are
taken to be made of the same material, with coefficient
of thermal expansion «, thermal conductivity K,
Young’s modulus E and Poisson’s ratio v, though the
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more general case would not involve any qualitatively
different behavior. Heat transfer occurs between the
inner surface of the tube (radiusr,) and a contained fluid
at temperature 7; through a coefficient i, and between
the outer surface (radius r,) and surrounding fluid at
temperature T, through a coefficient h,. At the interface
(radius r,) there is a thermal contact resistance R, which
varies with pressure or gap in a monotonic but as yet
unprescribed way.

The temperatures T}, T, are allowed to vary with the
axial distance z along the tube, but the heat transfer
coefficients h,, h, are assumed to be temperature
independent and hence constant. We also assume that
the distribution of initial prestress—i.e. prestress in the
isothermal condition—is uniform along the tube.

Following Srinivasan and France, we assume that
the local state of stress in the tube can be approximated
as one of plane stress (i.e. we assume that shell bending
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FiG. 1. Geometry of the problem. The heat transfer coefficient
is by at radius r, and h, at radius r,. Both tubes are of the same
material.
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C, specific heat of fluid

ci, ¢, seeequations (3), (6)

d  initial radial interference

d, minimum value of d for there to be a range
of multiple solutions

f  seeequation (4)

g  gap at the interface

h  heat transfer coefficient

H Biot number

K thermal conductivity

L length of heat exchanger tube

m mass flow rate

Q heat flow per unit axial length

r, 0,z cylindrical polar coordinates

ro interface radius

NOMENCLATURE

ry,r, inside radius, outside radius
R thermal contact resistance

T temperature

Tgq, Tz,  entry temperatures.

Greek symbols
o coefficient of thermal expansion
Ay rifre, i=1,2
v Poisson’s ratio.

Subscripts and superscripts
1 inner cylinder
2 outer cylinder
*  dimensionless variable.

effects and axial heat conduction in the shell can be
neglected) and hence the problem is locally two-
dimensional in the cross-sectional plane and depends
on the axial co-ordinate z only through the fluid
temperatures T;, T,. In the steady-state, these
temperatures are related to the inward radial heat flow
rate Q per unit axial length, through the energy balance
equations

- oac, )

z

where m;, C; (i = 1, 2) are respectively the mass flow
rates and specific heats of the fluids, both assumed
independent of z. We define the mass flow rates to be
positive in the z direction, so that for a counter-flow
heat exchanger m, and m, will be of opposite sign.
However, much of the following analysis is also
applicable to the parallel flow case.

HEAT FLOW THROUGH THE TUBE WALL

The controlling differential equation of the problem
is obtained by combining equations (1) with a further
equation defining the heat flow through the wall of the
Duplex tube as a function of the temperatures Ty, T,.

This problem is analyzed inref. [2], where it is shown
that the heat flow rate in the steady state is

_ 2K(G—T,)
e= (R*+c¢y) @
(see [3]), where
1 1
¢ = WH, + LH, +log (45/44) (3)

and

R* = KR/ro, H;=hro/K, A=rfro (i=12).

The contact resistance R is defined in terms of the
dimensionless function
(c1—c3)

f=1= Ry @

which satisfies the non-linear equation
g* =T —a* )
where

g* =g/ro, d*=djr,, T*=a(l+WT~T),

d is the radial interference which determines the initial
prestress

& log A al log A ©)
Cy = 5—— ————1lo
2T @-n BT @ BN

and g is the steady-state gap at the interface. For thin-
walled tubes, c, is approximately (4, —4,)/2.

Equation (5) also describes the condition where the
interface remains in contact provided that negative
values of g* are interpreted in terms of the interface
pressure, p, through the equation

_21-v)(A3-4)

o ama-n

SOLUTION FOR THE
CONTACT PRESSURE

The solution of equation (5) is most conveniently
discussed in graphical terms as in ref. [2]. For
illustration, we assume that the tube is steel (K = 35 W
m~1°C YL E=210GPa,v=03,a=12x107¢°C™Y)
and that ry = 16 mm, r; = 13.6 mm, r, = 18.4 mm,
giving A, = 0.85 and 4, = 1.15. These are close to the
values of Srinivasan and France, from whom we also
take the contact resistance curve shown in Fig. 2.
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F1G. 2. Contact resistance R as a function of pressure p and gap ¢ (from ref. [1]).

The function f depends on g* only through the
resistance R* and is plotted in Fig. 3, for various values
of c;.Itisasymptoticto f = 1asg* — oo andtoc,/c, as
g* — — 0. If there is good heat transfer between the
tube walls and the surrounding fluids, the first two
terms in equation (3) will be small giving a lower limit to
¢, of log (4,/A,). For thin-walled tubes, this reduces to
c1 & (A, — A1) = 2¢,, so that the limiting value of f at
large negative g* is 0.5. When there is significant
resistance to convective heat transfer, c, is greater than
(A, —4,) and the lower limit of f is reduced as can be
seen in Fig. 3.

Equation (5) can be solved graphically by finding the
intersection of f(g*) with a straight line of slope 1/T*
passing through the point (—d*, 0). There is a critical
value d§, which can be found by drawing the tangent to
the curve at the point of maximum slope (A) and
extending it to intersect the axis f = 0. For d* < 4§,
thereis always a unique steady-state solution but for d*
> d} thereis a range of values of T* for which there are
three solutions, indicated in Fig. 3 by the intersections
B, C and D.

For the conditions illustrated in Fig. 3, the point of

values of ¢,. This is attributable to the fact that the
resistance curve is approximated by a straightlinein the
range(0 < p < 0.56 MPa)because experimental values
of contact resistance were not available at such low
pressures. The minimum value of d* for multiple
solutions to occur is 1.02x10™* for ¢, =04,
corresponding to an initial contact pressure of 1.9 MPa.

For a given value of initial prestress, multiple
solutions are obtained only in a restricted range of
temperature differences, corresponding to the slopes of
those straight lines which make three intersections with
the f curve. This range is shown as a function of d* in
Fig. 4. For a large range of values of d* above 3 x 1074,
the minimum temperature difference to give multiple
solutions corresponds to the line which gives an
intersection at g* = 0 and which is defined by the
equation

T* = a*/f(0). ®)

Thus, although a certain minimum prestress is
necessary for multiple solutions to be possible, the
temperature difference needed to produce them
increases with prestress, and hence an increase of

maximum slope occurs at g* = —3.25x 1075 for all  prestress may be sufficient to avoid such behavior.
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F1G. 3. The function f is shown for various values of ¢; and ¢, = 0.15. Solutions of equation (5) correspond to
intersections between these curves and the straight line f = (g* +d*)/T*.
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F1G. 4. Effect of prestress d* and temperature difference T* on the occurrence of multiple solutions (¢, = 04,
¢, = 0.15).

RELATION BETWEEN TEMPERATURE
DIFFERENCE AND HEAT FLUX

From a heat transfer standpoint, the important
relationship is that between the temperature difference
T* and the heat flow rate, Q. Defining a dimensionless
heat flow rate, Q* = a(l +v)Q/2nK, we find

Q* = T*[(R*+c¢y) ©

from equation (2). This relation is easily computed by
treating g* as a parameter—i.e.for each value of g*, Ris
found from the resistance curve, T* is then found from
equations (4) and (6) and finally 0* from equation (9).
All these equations are linear in the functions for which
they are solved.

The resulting curves for ¢; = 0.4 and various values
of d* are shown in Fig. 5. The multiple solutions appear
in this figure in those curves which exhibit a range of T*

corresponding to three distinct values of Q*, but a more
striking feature of the curves is the extreme sensitivity of
Q* to T* in the vicinity of the transition from contact to
separation and this is not restricted to the multiple
solution case (d* > d§). We also note that for all the
curves illustrated, T* is a multivalued function of Q* in
some range. All the curves tend to approximately the
same straight line in the separation regime, since the
interface resistance is then almost constant (see Fig. 3).

AXIAL VARIATION OF TEMPERATURE

The variation of temperature along the heat
exchanger tube is defined by a differential equation
which is obtained by eliminating Q from equations (1)
and the relation shown graphically in Fig. 5. From (1)
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FIG. 5. Relation between heat flux Q* and temperature difference T* for various values of the prestress d*.



Heat transfer performance of prestressed Duplex tube 765

and the definitions of @*, T*, we have

dT*/dz* = —Q*

+ 1)
1m1,Cp2)

The direction of the positive z axis is chosen such that

(1 ¥ 1>>0
mlcpl 'hZCpZ

in which case, T* is a monotonically decreasing
function of z.

The dimensionless heat flux Q* is a known function
of T* and hence equation (10) can be numerically
integrated to find T* as a function of z*, except for an
arbitrary constant in z* which is determined by the
entry conditions to the tube. As with equation (9), it is
convenient to perform this integration parametrically
in terms of g*, since all the required functions can then
be obtained explicitly, without iteration.

For this purpose, we rewrite equation (10) in the form

dz*/dT* = —1/Q* (12)

(10)

where

z* = 271Kz | —
(mlcpl

(1n

and define a series of N points at which g* has the values
gi(i=1,..., N). The values of T*, Q*, z* at these points
are denoted by T, Q;, z;, respectively. The T;, Q; are
calculated as above [equation (9)] and the unknown
values of z;, can now be determined (except for an
arbitrary constant) from the finite-difference equations

Zipy—z;=—(T4,—T)/Q;, i=1...,N—-1. (13)

A modified version of this procedure is required for
those portions of the tube where multiple solutions are
predicted. The two-dimensional analysis shows that, in
these cases, at least two solutions are stable, and hence
we can only deduce the state realized in practice by
following the thermal and mechanical history of the
system. In the present system, the situation is made even
more complex by the fact that the transition from one
branch of the curve to the other could take place at any
point in a section of tube in the appropriate
temperature range. However, we can place upper and
lower bounds on the possible solutions by pursuing two
alternative limiting assumptions : (i) that solution B in
Fig. 3is always preferred to solution D ; or (ii) that D is
always preferred to B. In Fig. 5, this is equivalent to
replacing the actual curve by a discontinuous, but
single-valued function consisting of the portion (i) up to
B and beyond D, or (ii) up to A and beyond C. The
portion of the curve in Fig. 5 between B and C
corresponds to solutions like intersection C in Fig. 3
and would be expected to be unstable on the basis of the
two-dimentional analysis.

These assumptions are implemented in the
numerical integration by rejecting those values of g;
which require a reversal of sign in (7;,,—T,). For
example, with assumption (i), when the point B is
detected, g is incremented without incrementing z, until

FIG. 6. Axial variation of temperature difference T* along the
tube (c; = 04, ¢, = 0.15).

a value is reached where a higher T* is predicted,
corresponding to a point to the right of D.

Figure 6 shows the variation of temperature
difference between the two fluids along the axis of the
tube for various values of the initial prestress d*. We
note that, apart from the variation between the limits
predicted by assumptions (i) and (i) above, the
dimensionless presentation used gives a single curve for
each value of prestress, which applies for all mass flow
rates (including parallel or counter flow) and all entry
conditions. The entry conditions merely determine
which portion of the curve is appropriate to the actual
finite tube.

ENTRY CONDITIONS

For a parallel flow heat exchanger, the mass flow rates
have the same sign and the inequality (11) requires that
they be positive. The entry conditions and hence T* are
therefore known at the left end of the tube and we can
find the corresponding value of z* from Fig. 6. We
denote this value by z§. The heat flux Q is then known at
all points of the tube and we can find the temperatures
Ty, T, of the two fluids from equations (1) in the form

Ty CuT)

= e o G by Y
s iy T*)

B = e o Ca rinCy

where
mlcpl Ti(z)+ mchz T,(2)

T = - -
(mlcpl + mZCpZ)

(16)
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The counterflow heat exchanger is more interesting
in that T; is known at one end of the tube and T, at the
other. The mass flow rates now have opposite sign and
(11) requires m, C,,y +m,C,; < 0.

We first consider the case m; > 0 for which the two
entry temperatures are

Ti(zo) = Tg1; Ty(zo+ L) = Tg, 17

where L is the length of the tube.
Substituting into equations (14) and (15) and
eliminating T(z,) we find
1y Coyt T*(z8 4+ L¥) + 1, C, T*(28)
= (11, Cpy +1m,Cpo)a(1+v) (T — Tga)  (18)

which must be solved for z§.
For the opposite case, m, > 0, we define

Tizo+ L) = Tgy; Talze) = Tpz
and find
1, Coy T (2 + L¥) 410, Cp  T*(28)
= (11, Cpy +1Cpa)a(14v) (Tgp — Tgy). (20)
In both cases, the inequality (11) and the monotonic
nature of T* guarantee the existence of at least one
solution for z} if Ty, > Tg,—i.e. for radially inward
heat flow. (The case of radially outward flow can be
treated in the same way, using an extension of Figs. 5, 6

into the range g* < —d*, but it has no specially
interesting features.)
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MULTIPLE SOLUTIONS

It is clear from Fig. 6 that multiple solutions can
occur in either parallel or counterflow heat exchanger
tubes if the prestress is sufficiently high and the entry
conditions are such as to cause the temperature
difference at some point to be in the appropriate range.
However, we shall show in this section that the
counterflow heat exchanger can exhibit multiple
solutions, even if there is a unique relationship between
Q* and T*.

To demonstrate this, we consider the question of
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solving equation (18) for z%, the other quantities being
assumed known. It can be shown from the properties of
the function T*(z*) that the LHS of this equation—
denoted subsequently by F(z§)—is a continuous
function which tends to zero at large positive z§ and to
— oo at large negative z*. The RHS of equation (18) is
also negative and hence the equation has at least one
solution, but it will have three solutions for certain
values of the entry temperatures if F(z§) has a local
maximum and minimum. This in turn will generally be
the case if the function T* shows a maximum and a
minimum, and this is so even if d* < dg.

For particular values of the parameters, it is possible
to determine this question simply by computing F (z¥)
in the appropriate range, but in general, we can deduce
from the nature of the curves in Fig, 6 that |[F(z})| will
tend to display a maximum at z§ = z}* and a minimum
at z§ = (zf — L*), where z}* is the point at which T* is
discontinuous in slope. It follows that a sufficient (but
not necessary) condition for the existence of a range of
(T35 — Tg,) to give multiple solutions is

F(zf) > —(m,Cyy + 1y Cop)o(1 4 v) (T — Ty)

> — F(zfF —L*). 1)

In this case, the three solutions will generally occur
respectively in the ranges: (i) z& > z¥ (contact
throughout the tube); (ii) z¥ > z§ > z¥ — L* (transition
from contact to separation in the middle of the tube);
and (iii) z* — L* > z§ (separation throughout the tube).
However, if the maximum or minimum of F(z}) does
not occur at the points of slope discontinuously, other
combinations of solutions are possible.
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INFLUENCE DE LA RESISTANCE THERMIQUE DE CONTACT INTERNE SUR LA
PERFORMANCE THERMIQUE D'UN TUBE DOUBLE FRETTE

Résumé — Le tube double fretté pour échangeur de chaleur est constitué de deux cylindres concentriques
assemblés dans un état de précontrainte. Pendant 'opération, la dilatation thermique change la pression a
interface et ceci cause un accroissement sensible de la résistance thermique du tube. Dans certaines
circonstances, on peut obtenir plus d’une solution de régime permanent. On analyse I'effet de ce mécanisme sur
la variation de température axiale dans les échangeurs de chaleur en écoulements paralléles, a co-courant ou
contre-courant. On développe une méthode pour intégrer sans itération les équations dans le cas d'une
résistance thermique de contact arbitraire, non linéaire, dépendant de la pression, et on discute l'effet de la
précontrainte et des autres paramétres sur la possibilité de solutions multiples.
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_EINFLUSS DES THERMISCHEN KONTAKTWIDERSTANDS AUF DAS
WARMEUBERTRAGUNGSVERHALTEN VORGESPANNTER DOPPELROHRE

Zusammenfassung—Doppelrohr-Wirmetauscher bestehen aus zwei, unter Vorspannung ineinander-
gefiigten, konzentrischen Zylindern. Wihrend des Betriebes verdndert sich die Flichenpressung in der
Kontaktfliche der Rohre durch thermische Ausdehnung, was eine Zunahme des thermischen Widerstands
zur Folge haben kann. Unter bestimmten Voraussetzungen erhilt man mehr als eine stationdre Losung.
In diesem Bericht werden die Auswirkungen dieses Vorgangs auf die axiale Temperaturverteilung in Gleich-
und Gegenstromwirmeiibertragern untersucht. Es wurde ein Verfahren entwickelt, um die den Vorgang
beschreibenden Gleichungen in geschlossener Form fiir einen beliebigen nichtlinearen druckabhingigen
Kontaktwiderstand zu losen. Der EinfluB der Vorspannung und anderer Parameter auf das Zu-
standekommen von Mehrfach-Losungen wird diskutiert.

BIIMSAHUE TEPMUYECKOI'O COITPOTUBJIEHUSA HA MEX®A3HON FPAHULE HA
XAPAKTEPUCTHUKMH TEITJIOOBMEHA NPEABAPUTEJIBHO HAIPSAXXEHHOU TPYBbI C
JBOMHOM CTEHKON

Asnoraums—Tpy6sl TennooOMeHHMKA ¢ ABOMHON CTEHKOH COCTOST M3 ABYX KOHLUEHTPHYECKHX LMJIMH-
ZIpOB, COOPaHHBIX B COCTOSIHMM MpPefBAPUTENILHOTO HANpPsDKEHNs MeToaoM HaTsra. B npouecce paboTst
TENJ0BOe PaCIUMPEHHE H3MEHSeT NaBjicHHe Ha Mex(asHoM rpaHulle, YTO CYIUECTBEHHO yBEJIMYMBAaET
Tew10BOe CONPOTHBJEHHE. [IpH ONMpeNeNeHHbIX YCIOBHAX MOXHO IOJIYYHTh HECKOJIBKO CTAIIHOHAPHBIX
peLueHnii. AHanU3MpyeTCa BINAHUE YKa3aHHOTO MEXaHH3Ma Ha aKCHaJbHOC H3IMCHEHHE TeMIEpaTypbl B
IPSMOTOYHBIX MJTH IPOTUBOTOYHEIX TelIooOMeHHMKaX. Pazpaboran Meron Ge3bITepallMOHHOTO MHTET-
PHPOBaHHS OCHOBHBIX YpaBHEHHI B Ciy4Ya€ NPOH3BOJBHOIO, HEJIMHEHHOIO, 3aBHCAIICTO OT JaBJICHMSA
CONPOTHBJICHHS KOHTaKTa ¥ 00cyxaaeTcs BAMAHAE NPEABAPUTEILHOTO HANIPAXKEHHA M APYTHX NapameT-
pOB Ha YHCJO peLIeHUH.
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